1. concours général 1991 - exercice 4

énoncé

Soit p un nombre entier naturel et $n = 2^p$.
On considère les parties A de l’ensemble $E = \{1, 2, \ldots, n\}$ possédant la propriété suivante :

si x appartient à A, alors $2x$ n’appartient pas à A.

Déterminer le nombre maximal d’éléments d’un telle partie A.
2. concours général 1991 - exercice 4

Solution 1

\[
\begin{align*}
p \in N, n = 2^p & \quad E = \{1, 2, \ldots, n\} \\
\text{et } A \in P(E) & \quad \text{telle que } \forall x \in A, \quad 2x \notin A
\end{align*}
\]
pour \(i \in \{0, \ldots, p-2\}\) on note \(B_i\) l’ensemble des couples
\((2^i + 1; 2^{i+1} + 2)\) \((2^i + 2; 2^{i+1} + 4)\) \(\ldots\) \((2^i + k; 2^{i+1} + 2k)\) \((2^{i+1}; 2^{i+2})\). On a \(B_i \subset E\)

Pour chaque couple \((a, b)\) de \(B_i\) on a \(b = 2a\).

Par conséquent, au moins un élément de \(\{a; b\}\) n’appartient pas à \(A\).

On note
\[
B = \{(1, 2) \cup B_1 \cup B_3 \cup \ldots \cup B_{p-2}\} \quad \text{si } p \text{ est impair}
\]
\[
\text{et } B = \{(1, 2) \cup B_2 \cup B_4 \cup \ldots \cup B_{p-2}\} \quad \text{si } p \text{ est pair}
\]

Pour tout \(i \in \{0, \ldots, p-2\}\) on note
\[
\begin{align*}
a_{ik} &= 2^i + k, & k \in \{1; \ldots; 2^i\} \\
b_{ik} &= 2^{i+1} + 2k
\end{align*}
\]
Notons que tous les nombres \(a_{ik}\) et \(b_{ik}\) appartenant à \(B\) sont différents car \(a_{i,2^i} < b_{i,2^i}\). D’autre part on a toujours \(b_{ik} = 2a_{ik}\) donc parmi tous les nombres des couples appartenant à \(B\) la moitié au moins n’appartient pas à \(A\). Il suffit donc de dénombrer les couples de \(B\):

On a \(\text{card}B_i = 2^i\) d’après la définition de \(B_i\).

Donc
\[
\begin{align*}
\text{card}B &= 1 + 2^1 + 2^3 + \ldots + 2^{p-2} \quad \text{si } p \text{ impair} \\
\text{card}B &= 1 + 2^2 + 2^4 + \ldots + 2^{p-2} \quad \text{si } p \text{ pair}
\end{align*}
\]

\[
2^2 + 2^4 + \ldots + 2^{p-2} = 4^1 + 4^2 + \ldots + 4^{p-2} = 4 \left(4^{p-2} - 1\right) = \frac{1}{3} (2^p - 4)
\]

d’où si \(p\) pair \(\text{card}B = 1 + \frac{1}{3} (2^p - 4) = \frac{1}{3} (2^p - 1)\)
si p impair
\[
\text{card}B = 1 + 2 \left(2^0 + 2^3 + \ldots + 2^{p-3} \right) = 1 + 2 \left(\frac{1}{3} \left(2^{p-1} - 1 \right) \right) = \frac{1}{3} (2^p + 1)
\]

Or $\text{card}E = 2^p$
donc $\text{card}A \leq \text{card}E - \text{card}B$
d'où si p pair $\text{card}A \leq \frac{1}{3} \left(2^{p+1} + 1 \right)$
si p impair $\text{card}A \leq \frac{1}{3} \left(2^{p+1} - 1 \right)$
On va vérifier que ce maximum est atteint :
Soit $A = \{2^p; 2^p - 1; \ldots; 2^p - 1 + 1\} \cup \{2^p - 2; \ldots; 2^p - 2^3 + 1\} \cup \ldots \cup \{2\} \text{ si } p \text{ impair}$
$A = \{2^p; 2^p - 1; \ldots; 2^p - 1 + 1\} \cup \{2^p - 2; \ldots; 2^p - 3 + 1\} \cup \ldots \cup \{2^2; 2^1 + 1\} \cup \{1\} \text{ si } p \text{ est pair}$
On vérifie aisément que A possède bien la propriété $x \in A: 2x \notin A$.
D’autre part on calcule $\text{card}A = (2^p - 2^{p-1}) + (2^{p-2} - 2^{p-3}) + \ldots + (2^2 - 2^1) + 1$ si p est impair
et si p est impair $\text{card}A = (2^p - 2^{p-1}) + (2^{p-2} - 2^{p-3}) + \ldots + (2^3 - 2^1) + 1$
d'où si p est pair
\[
\text{card}A = \left(2^{p-1} + 2^{p-3} + \ldots + 2^1 + 1\right) = 1 + 2 \left(1 + 2^3 + \ldots + 2^{p-2}\right) = \frac{1}{3} \left(2^{p+1} + 1\right)
\]
Si \(p \) est impair

\[
\text{card} A = (2^{p-1} + 2^{p-3} + \ldots + 2^1 + 1)
\]

\[
= 1 + 2 (2^1 + 2^3 + \ldots + 2^{p-2})
\]

\[
= \frac{1}{3} (2^{p+1} - 1)
\]

Donc le maximum est atteint.